A Novel Data-driven Image Annotation Method
نویسندگان
چکیده
Image annotation is a promising approach to bridging the semantic gap between low-level features and high-level concepts, and it can avoid the heavy manual labor. Most existing automatic image annotation approaches are based on supervised learning. They often encounter several problems, such as insufficiency of training data, lack of ability in dealing with new concept, and a limited number of semantic concepts. Internet images are massive, rich information, customized etc. Therefore, Internet data is a potential repository to provide a sufficient source for semantic annotation. In this paper, we proposed a novel date-driven image annotation method, which aims to utilize Internet data to perform automatic image annotation. Internet data, collected from several image search engine, are first preprocessed, clustered and mined to construct a concept clustering model. And then candidate annotation terms are extracted through the model for query image or keyframe. Afterwards, a rank algorithm is designed to filter out noise terms. Finally, an update phase is implemented to improve the whole method. Evaluations on benchmark image datasets have indicated that the proposed method is effective and efficient.
منابع مشابه
Fuzzy Neighbor Voting for Automatic Image Annotation
With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...
متن کاملTags Re-ranking Using Multi-level Features in Automatic Image Annotation
Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...
متن کاملScalable Image Annotation by Summarizing Training Samples into Labeled Prototypes
By increasing the number of images, it is essential to provide fast search methods and intelligent filtering of images. To handle images in large datasets, some relevant tags are assigned to each image to for describing its content. Automatic Image Annotation (AIA) aims to automatically assign a group of keywords to an image based on visual content of the image. AIA frameworks have two main sta...
متن کاملContext-Driven Image Annotation Using ImageNet
Image annotation research has demonstrated success on test data for focused domains. Unfortunately, extending these techniques to the broader topics found in real world data often results in poor performance. This paper proposes a novel approach that leverages WordNet and ImageNet capabilities to annotate images based on local text and image features. Signatures generated from ImageNet images b...
متن کامل